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Abstract
We investigate the enlarged CP(N) model in 2 + 1 dimensions. This is a hybrid
of two CP(N) models coupled with each other in a dual symmetric fashion,
and it exhibits the gauge symmetry enhancement and radiative induction of the
finite off-diagonal gauge boson mass as in the 1 + 1-dimensional case. We
solve the mass gap equations and study the fixed point structure in the large-N
limit. We find an interacting ultraviolet fixed point which is in contrast with the
(1 + 1)-dimensional case. We also compute the large-N effective gauge action
explicitly.

PACS numbers: 11.15.−q, 11.30.Qc, 11.10.Gh, 11.15.Pg

1. Introduction

The nonlinear sigma models have proved to be a very useful theoretical laboratory to study
many important subjects such as spontaneous symmetry breaking [1, 2], asymptotic freedom
and instantons in QCD [3–5], the dynamical generation of gauge bosons [6], target space
duality in string theory [7, 8] and many others [9]. Recently, some new properties have been
explored in relation to the dynamical generation of gauge bosons, that is, the gauge symmetry
enhancement and radiatively induced finite gauge boson mass in 1 + 1 dimensions [10]. It is
well known that the CP(N) ≡ SU(N)/SU(N − 1) × U(1) model [11] is the prototype of
the nonlinear sigma model with dynamical generation in which the auxiliary U(1) gauge field
becomes dynamical through the radiative corrections in the large-N limit [6]. In the recently
proposed extension [10] of the CP(N) model, two complex projective spaces with different
coupling constants have mutual interactions which are devised in such a way as to preserve
the duality between the two spaces. In addition to the two auxiliary U(1) gauge fields which
stand for each complex projective space, one extra auxiliary complex gauge field is introduced
to derive the interactions with duality. It turns out that when the two coupling constants are
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equal, the extended model becomes the nonlinear sigma model with the target space of the
Grassmann manifold Gr(N, 2) = SU(N)/SU(N − 2)× U(2) [12].

It was shown in [10] that together with the two auxiliary U(1) gauge fields this complex
field becomes dynamical through radiative corrections. Moreover, in the self-dual limit where
the two running coupling constants become equal, they become massless and combine with the
twoU(1)fields to yield theU(2)Yang–Mills theory. That is, the gauge symmetry enhancement
occurs in the self-dual limit. Away from this limit, the complex gauge field becomes massive.
It was noted that this mass is radiatively induced through the loop corrections, and it assumes a
finite value which is independent of the regularization scheme employed. This could provide an
alternative approach to providing the gauge boson mass to the conventional Higgs mechanism.
Therefore, it is important to attempt to extend the previous 1 + 1 dimensions results of [10]
in order to check whether this is also viable in various other dimensions. In this paper, we
take a first step, and extend the previous analysis to 2 + 1 dimensions. Even though the
(3 + 1)-dimensional analysis awaits for some realistic applications, it has to be recalled
that the CP(N) model in 2 + 1 dimensions [13] has many additional interesting properties
such as non-perturbative renormalizability despite the appearance of linear divergence, a
non-trivial ultraviolet (UV) fixed point and second-order phase transition [14], and the
induction of the Maxwell–Chern–Simons theory through the higher derivative interactions
of the renormalizable Wess–Zumino–Witten model [15]. Therefore, the analysis carried out
in this paper is expected to shed light on the new aspects of the (2 + 1)-dimensional nonlinear
sigma model in its own right.

The content of the paper is organized as follows. In section 2, we review the classical
features of the coupled dual CP(N) model, and elaborate the model in terms of the coadjoint
orbit approach. In section 3, we solve the large N mass gap equations, and find that there
exist four phases of second-order phase transition which are separated by UV fixed lines.
In section 4, we discuss large N renormalization and fixed point structure of the vacua.
In section 5, we carry out the path integration explicitly and compute the U(1) × U(1)
gauge invariant effective action in the unbroken phase. We show that the two-point vacuum
polarization graphs yield finite mass terms for the gauge fields which vanish at the self-
dual limit, and the gauge symmetry is enhanced to U(2) symmetry. Section 6 includes
conclusion and discussion. The dimensional regularization of the vacuum polarization function
is presented in appendix A. We will show the detail of three- and four-point gauge vertices in
appendix B in the spacetime dimensionality 2 � D � 4.

2. Model and symmetry

We start from the Lagrangian written in terms of the N × 2 matrix Z such that [10]

L = 1

g2
Tr[(DµZ)

†(DµZ)− λ(Z†Z − R)] (2.1)

where λ is a 2 × 2 Hermitian matrix which transforms as an adjoint representation under the
local U(2) transformation. R is a 2 × 2 matrix given by

R =
[
r 0
0 r−1

]
(2.2)

with a real positive r. The covariant derivative is defined consistently as DµZ ≡ ∂µZ −ZÃµ

with a 2 × 2 anti-Hermitian matrix gauge potential Ãµ ≡ −iÃa
µT

a associated with the local
U(2) symmetry. We assign each component of λ and Ãµ as follows.

λ =
[
λ1 λ3

λ∗3 λ2

]
Ãµ = −i

[
Aµ

1
2Cµ

1
2C
∗
µ Bµ

]
. (2.3)
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The Z field is made from two complex N-vectors ψ1 and ψ2 such that

Z = [ψ1, ψ2]←→ Z† =
[
ψ

†
1

ψ
†
2

]
. (2.4)

The kinetic term of the Lagrangian (2.1) is invariant under the local U(2) transformation,
while the R with r �= 1 explicitly breaks the U(2) gauge symmetry down to U(1)A × U(1)B
where U(1)A and U(1)B are generated by T 0 ± T 3, respectively. Thus the symmetry of our
model is [SU(N)]global × [U(2)]local for r = 1, while [SU(N)]global × [U(1)A × U(1)B]local

for r �= 1. The local symmetry group H is U(2) when r = 1, and U(1)A ×U(1)B when r �= 1.
To see the geometry of the target space, we rewrite the Lagrangian (2.1) in terms of two
coupling constants g1 and g2 defined by g ≡ √g1g2 and r ≡ g2/g1. Using the on-shell
constraint Z†Z = R and rescaling the fields by

ψ1

g
→ ψ1

g1

ψ2

g
→ ψ2

g2

Cµ

g
→ Cµ

C∗µ
g
→ C∗µ (2.5)

the Lagrangian (2.1) can be rewritten as

L = 1

g2
1

|(∂µ + iAµ)ψ1|2 +
1

g2
2

|(∂µ + iBµ)ψ2|2 +
1

4

(
g1

g2
+
g2

g1

)
C∗µC

µ

− i
1√
g1g2

C∗µψ
†
1∂

µψ2 − i
1√
g1g2

Cµψ
†
2∂

µψ1 − λ∗3
g1g2

ψ
†
1ψ2 − λ3

g1g2
ψ

†
2ψ1

− λ1

g2
1

(ψ
†
1ψ1 − 1)− λ2

g2
2

(ψ
†
2ψ2 − 1). (2.6)

The above Lagrangian describes two CP(N) models each described by ψ1, g1 and ψ2, g2

coupled through the derivative coupling. There is a manifest dual symmetry between sectors
1 and 2, Aµ and Bµ, Cµ and C∗µ and λ3 and λ∗3. Eliminating the auxiliary fields through the
equations of motion, and substituting back into the Lagrangian, we obtain modulo the on-shell
constraints

L′ =
2∑

i=1

1

g2
i

[
|∂µψi |2 + (ψ

†
i ∂µψi)(ψ

†
i ∂µψi)

]
+

2

q

2∑
i,j=1

′ 1

gigj
(ψ

†
i ∂µψj )(ψ

†
j ∂µψi) (2.7)

where q = g2/g1 + g1/g2 and the prime in the third sum denotes that the sum is restricted
to i �= j indices. We notice that the target space geometry of the Lagrangian (2.7) with q =
2 can be understood in the coadjoint orbit approach [16]3 to the nonlinear sigma model. In
terms of coadjoint orbit variables

Q = 1

i

2∑
i=1

1

gi

(
ψiψ

†
i −

1

N
I

)
ψ

†
i ψj = δij (2.8)

the Lagrangian (2.7) with q = 2 can be rewritten as

LQ = − 1
2 tr(∂µQ)2. (2.9)

In the above Lagrangian (2.9), the equal coupling g1 = g2 corresponds to the target space of
Grassmann manifold Gr(N, 2), whereas the non-equal coupling g1 �= g2 correspond to the
flag manifold M = SU(N)/SU(N − 2)× U(1)× U(1) [19]. Therefore, the generic q �= 2
case of the Lagrangian (2.7) is a deformation of the flag manifold model.
3 The coadjoint orbit formulation of the nonlinear sigma model on G/H proved to be very useful in many aspects of
the subject, and the hidden local symmetry with Gglobal × Hlocal is explicitly built in the coadjoint orbit variable. For
the hidden local symmetry approach see [17, 18].
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In order to carry out the path integration in the large-N limit, we rewrite the Lagrangian
(2.1) in terms of a 2 × 2 Hermitian matrix such that

L = 1

g2
[ψ†

1, ψ
†
2 ] (MT ⊗ I)

[
ψ1

ψ2

]
+

r

g2
λ1 +

1

rg2
λ2 (2.10)

where the 2 × 2 matrix operator M is given by

M ≡ G−1 − �(Ã) (2.11)

G−1 ≡ −�−λ =
[−�−λ1

−λ∗3
−λ3

−�−λ2

]
(2.12)

�(Ã) ≡ −Ãµ∂̂
µ + ÃµÃ

µ. (2.13)

where the differential operator ∂̂µ ≡ ∂µ −←−∂µ must be regarded as not operating on the gauge
potential Ãµ. In terms of Aµ, Bµ and Cµ fields, all components of the matrix M are written as

M11 = −∂2 − λ1 − iAµ∂̂
µ + AµA

µ + 1
4C
∗
µC

µ (2.14)

M22 = −∂2 − λ2 − iBµ∂̂
µ + BµB

µ + 1
4C
∗
µC

µ (2.15)

M12 = −λ3 − 1
2 iCµ∂̂

µ + 1
2Cµ(A

µ + Bµ) (2.16)

M21 = −λ∗3 − 1
2 iC∗µ∂̂

µ + 1
2C
∗
µ(A

µ + Bµ). (2.17)

Here we have never used the on-shell constraint so that the quadratic term of C∗µC
µ has been

absorbed into the matrix M. The last terms in equations (2.16) and (2.17) were missing in
the Lagrangian (2.6) due to the on-shell constraint but they are essential to recover the gauge
invariance of the off-shell Lagrangian (2.10). We use the off-shell Lagrangian (2.10) in order
to preserve the gauge invariance in every step of computation.

3. Large-N gap equations

The large-N effective action is given by path integrating Z and Z†, or equivalently ψ1, ψ†
1 , ψ2

and ψ
†
2 . We obtain

Seff =
∫
x

L + iN ln DetM. (3.1)

The global U(N) symmetry enables us to choose the VEV vectors 〈ψ1〉 and 〈ψ2〉 to be real
N-vectors and we can set all λ1, λ2 and λ3 to be real without any loss of generality. The large-N
effective action is determined as

Veff = − 1

N"
Seff [ψ1,2 = �v1,2, λ1,2,3 = m2

1,2,3, Ãµ = 0] (3.2)

where �v1, �v2 are real N-vectors and " denotes the spacetime volume. We obtain

Veff = m2
1

Ng2

(�v2
1 − r

)
+

m2
2

Ng2

(�v2
2 − r−1

)
+

2m2
3

Ng2
�v1 · �v2 − i"−1 ln DetG−1. (3.3)

The gap equations are schematically given as follows:

∂Veff

∂�v1
= 2

Ng2

(
m2

1�v1 + m2
3�v2
) = 0 (3.4)

∂Veff

∂�v2
= 2

Ng2

(
m2

2�v2 + m2
3�v1
) = 0 (3.5)

∂Veff

∂m2
3

= 2

Ng2
�v1 · �v2 −

∫
dDk

(2π)D
2m2

3

(k2 + m2
+)(k

2 + m2−)
= 0 (3.6)
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∂Veff

∂m2
1

= 1

Ng2

(�v2
1 − r

)
+
∫

dDk

(2π)D
k2 + m2

2

(k2 + m2
+)(k

2 + m2−)
= 0 (3.7)

∂Veff

∂m2
2

= 1

Ng2

(�v2
2 − r−1) +

∫
dDk

(2π)D
k2 + m2

1

(k2 + m2
+)(k

2 + m2−)
= 0 (3.8)

where the loop momenta are Euclideanized and m2
± are given in terms of m2

1,2,3 by

m2
+ + m2

− = m2
1 + m2

2 m2
+m

2
− = m2

1m
2
2 −m4

3. (3.9)

We focus on D = 3 case below.
First we have to regularize the divergent integrals in the gap equations. We separate out

the ultraviolet divergence in (3.7) as∫ ' dDk

(2π)3

1

k2
+
∫

dDk

(2π)3

[
k2 + m2

2

(k2 + m2
+)(k

2 + m2−)
− 1

k2

]
(3.10)

which is calculated to be

1

2π2
'− 1

4π

m2
1 + m+m−
m+ + m−

. (3.11)

Then we obtain the properly regularized gap equations in D = 3:

m2
1�v1 + m2

3�v2 = 0 (3.12)

m2
2�v2 + m2

3�v1 = 0 (3.13)

1

u
' �v1 · �v2 = 1

4π

m2
3

m+ + m−
(3.14)

1

u
' �v2

1 =
(
r

u
− 1

u∗

)
' +

1

4π

m2
1 + m+m−
m+ + m−

(3.15)

1

u
' �v2

2 =
(

1

ur
− 1

u∗

)
' +

1

4π

m2
2 + m+m−
m+ + m−

(3.16)

where we have introduced the dimensionless coupling u ≡ Ng2' and u∗ ≡ 2π2.
Suppose that m3 �= 0 is a solution to the gap equations. Equations (3.12) and (3.13) yield

that �v1 and �v2 are anti-parallel to each other, say specifically,

�v2 = −m2
1

m2
3

�v1 �v1 = −m2
2

m2
3

�v2 (3.17)

iterative substitution of which provides m2
3 = m1m2 so that we can set m+ =

√
m2

1 + m2
2,

m− = 0. Substituting (3.17) into (3.14), we obtain

1

u
' �v2

1 = −
1

4π

m2
2√

m2
1 + m2

2

. (3.18)

The left-hand side is positive, whereas the right-hand side is negative. This result is obviously
inconsistent in itself and we therefore conclude that m3 �= 0 is not a solution to the gap
equations.

Setting m3 = 0 in (3.9), we can choose for example m+ = m1, m− = m2. Then the gap
equations are simplified such that

m2
1�v1 = 0 (3.19)

m2
2�v2 = 0 (3.20)

�v1 · �v2 = 0 (3.21)
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u1

u2

u*

u*

IV

I II

III

u1

u2

u*

u*

IV

I II

III

Figure 1. Large-N phase diagram in three dimensions.

1

u
' �v2

1 =
(
r

u
− 1

u∗

)
' +

1

4π
m1 (3.22)

1

u
' �v2

2 =
(

1

ur
− 1

u∗

)
' +

1

4π
m2. (3.23)

Note that �v1 and �v2 are perpendicular to each other and may possibly break the global SU(N)

symmetry down to the SU(N − 2)× U(1)× U(1) symmetry.
In order to simplify the following analysis, let us introduce u1 ≡ u/r and u2 ≡ ur . The

possible phases of vacuum are classified depending on the regions in the parameter space
(u1, u2) as follows (see figure 1).

I. u1 < u∗ and u2 < u∗ ←→ u/u∗ < min{r, r−1}
Since the right-hand sides of both (3.22) and (3.23) become positive in this case, we
have a solution: �v1 �= �0, �v2 �= �0 (m1 = 0, m2 = 0). The orthogonal condition
(3.21) tells us that this solution maximally breaks the global SU(N) symmetry down
to SU(N − 2) × U(1)× U(1). From equations (2.14) and (2.15) we see that all gauge
fields become massive due to 〈ψ†

1ψ1〉 �= 0 and 〈ψ†
2ψ2〉 �= 0 so that the gauge group H is

fully broken.

II. u1 > u∗ and u2 < u∗ ←→ r < u/u∗ < r−1

The right-hand side of (3.22) is not positive definite so that we have a solution: �v1 = �0,
�v2 �= �0 (m1 �= 0, m2 = 0). The SU(N) symmetry is broken down to SU(N − 1)×U(1).
Equation (2.15) tells us that Bµ and Cµ become massive due to 〈ψ†

2ψ2〉 �= 0, while Aµ

remains massless as shown in equation (2.14). In terms of the U(2) adjoint gauge fields,
Aµ is written as Aµ =

(
Ã0

µ + Ã3
µ

)/
2 and is therefore regarded as a gauge field associated

with the U(1)A gauge symmetry. The local H symmetry is broken down to the U(1)A
symmetry.

III. u1 < u∗ and u2 > u∗ ←→ r−1 < u/u∗ < r

As the case before we have a solution: �v1 �= �0, �v2 = �0 (m1 = 0, m2 �= 0). The SU(N)

symmetry is broken down to SU(N − 1)×U(1). Since Bµ only remains massless, the H
symmetry is broken down to the U(1)B symmetry.
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IV. u1 > u∗ and u2 > u∗ ←→ u/u∗ > max{r, r−1}
We only have a trivial solution: �v1 = �0, �v2 = �0 (m1 �= 0, m2 �= 0). Both global SU(N)

and local H symmetries remain unbroken.

We notice that the four phases I, II, III, IV are separated by the two critical lines u1 = u∗

and u2 = u∗ which arise as ultraviolet fixed lines associated with the second-order phase
transitions after the large-N renormalization of the effective potential.

4. Renormalization and fixed point structure of the vacua

The only UV divergences in the large-N effective potential are those in the gap equations
(3.22) and (3.23) so that we impose the following renormalization conditions:

d

d ln'

(
1

u1
− 1

u∗

)
' = 0 (4.1)

d

d ln'

(
1

u2
− 1

u∗

)
' = 0. (4.2)

This yields two decoupled renormalization group (RG) equations

du1

d ln'
= u1

(
1− u1

u∗
)

(4.3)

du2

d ln'
= u2

(
1− u2

u∗
)

(4.4)

of which UV fixed points u1 = u∗ and u2 = u∗ can be identified with the two critical lines
which separate the four different phases. Moreover, the intersection point (u1, u2) = (u∗, u∗)
is conformally invariant. This situation is realized as a self-dual condition r = 1 (u1 = u2)
which arises as a UV fixed line of the RG β-function for r. In terms of v ≡ u/u∗ and r, the
RG equations are equivalently rewritten as two coupled equations:

dv

d ln'
= v

[
1− 1

2

(
r +

1

r

)
v

]
(4.5)

dr

d ln'
= 1

2
v(1− r2) (4.6)

which show two relevant directions v = r and v = r−1 around (r, v) = (1, 1). In fact, if we
substitute v = r or v = r−1 into (4.5) and (4.6), the two equations reduce to the equations

dr

d ln'
=




1

2
r(1− r2) for v = r

1

2r
(1− r2) for v = 1

r
.

(4.7)

This shows the existence of the UV fixed point at r = v = 1. The phase diagram in the
(r, v)-plane is depicted in figure 2.

5. Large-N effective action and enhanced gauge symmetry

The large-N effective action (3.1) is schematically expanded such that

Seff =
∫
x

L + iN ln DetG−1 − iN
∞∑
n=1

1

n
Tr[G�(Ã)]n. (5.1)

The boson propagator G becomes a diagonal 2 × 2 matrix due to the gap equation solution
m3 = 0. We neglect the fluctuation fields coming from λ1,2,3 around m2

1,2,3 and consider the
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r

v

1

1

IV

IIIII

I

r

v

1

1

IV

IIIII

I

Figure 2. Large-N phase diagram in the (r, v)-plane.

(a) (b)

Figure 3. Vacuum polarization diagrams. (a) n = 2. (b) n = 1.

symmetric phase IV. In the following, we study the diagrams up to four-point functions which
are of the lowest order in the derivative expansion and cast into the Yang–Mills action of the
enhanced U(2) gauge symmetry at the self-dual limit r = 1.

5.1. Vacuum polarization and the off-diagonal gauge boson mass

We have two diagrams in figure 3. They are combined into kinetic terms such that

(3a) + (3b) = − iN 1
2 Tr

[
GÃµ∂̂

µGÃν∂̂
ν
]− iNTr

[
GÃµÃ

µ
]

= 1
2N

∑
ij

∫
x

Ã
µ

ij (x).
ij
µν(i∂x)Ã

ν
ji (x) (5.2)

where the vacuum polarization function . is given by

.ij
µν(p) = −

∫
d3k

i(2π)3

(2k + p)µ(2k + p)ν(
k2 −m2

i

) [
(k + p)2 −m2

j

] +
∫

d3k

i (2π)3

2gµν
k2 −m2

i

(5.3)

which must be regularized so as to preserve the U(1)A × U(1)B gauge invariance which is
manifest even when r �= 1. The vacuum polarization function is calculated such that

.ij
µν(p) =

(
gµν − pµpν

p2

)
.

ij

T (p) +

(
pµpν

p2

)
.

ij

L (p) (5.4)
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with the transverse function .T and the longitudinal function .L obtained as (see appendix
A)

.
ij

T (p) ≡
1

2π

[
mi + mj

2
−
∫ 1

0
dx
√
K

]
(5.5)

.
ij

L (p) ≡
(
m2

i −m2
j

)2

8πp2

[
2

mi + mj

−
∫ 1

0
dx

1√
K

]
(5.6)

where we have introduced K ≡ xm2
i + (1 − x)m2

j − x(1 − x)p2. Each of .T and .L has a
constant as the leading term in momentum expansion. Moreover, we see that

.
ij

T (p) = cij + p2f
ij

T (p) (5.7)

.
ij

L (p) = cij + p2f
ij

L (p) (5.8)

where the same constant cij arises both in .T and .L and is determined as

cij = − (mi −mj)
2

12π(mi + mj)
. (5.9)

Then the vacuum polarization can be written as

.ij
µν(p) = cijgµν +

(
p2gµν − pµpν

)
f

ij

T (p) + pµpνf
ij

L (p) (5.10)

where both cij and f
ij

L vanish when i = j so as to provide the A (B) boson with the U(1)A
(U(1)B) gauge invariant kinetic term, while they remain nonzero when i �= j and provide the
C boson with the mass given by (see appendix A)

MC =
√
−c12

f 12
T (0)

=
∣∣∣∣m2

1 −m2
2

2

∣∣∣∣
√

5

m2
1 + m2

2 + 3m1m2
. (5.11)

A couple of remarks are in order. First, we note that the above mass does not vanish when
m1 �= m2 which in turn implies r �= 1 from the mass gap equations (3.22) and (3.23). It is also
symmetric under the exchange of m1 and m2. At the self-dual limit r= 1 (m1= m2= m), both
c12 and .̃12

L become zero so that the off-diagonal C boson becomes massless and combines into
the enhanced U(2) gauge fields together with the diagonal A, B bosons. Second, it should be
emphasized that this mass generation of C bosons is a genuine quantum effect away from the
self-dual line and the mass takes a definite value in terms of the two mass scales without any
ambiguity. It is also independent of the regularization scheme employed. This unambiguity is
in contrast with some other radiative corrections in quantum field theory which are finite but
undetermined [20].

The vacuum polarization diagrams in figure 3 finally provide the kinetic terms

(3a) + (3b) = N

4

∫
x

[−f 11
T (0)FµνF

µν(A)− f 22
T (0)FµνF

µν(B)− c12CµC∗µ

− 1
2f

12
T (0)∂[µC

∗
ν]∂

[µCν] − f 12
L (0)∂µC∗µ∂

νCν

]
(5.12)

in the leading order of derivative expansion. At the self-dual limit, f 11
T (0) = f 22

T (0) =
N/24πm and c12, f 12

L (0)→ 0 so that the above kinetic terms are rearranged into

(3a) + (3b) = N

96πm

∫
x

[
tr
{
∂[µÃν]∂

[µÃν]} + O

(
∂2 ∂

2

m2

)]
. (5.13)
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(a) (b)

Figure 4. Three-point gauge vertices. (a) n = 3. (b) n = 2.

5.2. Three-point guage vertices

Both of the three-point gauge diagrams (a) and (b) in figure 4 contribute to the Yang–Mills
action. They are given by the following integrals:

(4a) = iN 1
3 Tr

[
GÃµ∂̂

µGÃν∂̂
νGÃρ ∂̂

ρ
]

(5.14)

(4b) = iNTr
[
GÃµ∂̂

µGÃνÃ
ν
]
. (5.15)

In the leading order of derivative expansion, they are calculated to be (see appendix B)

(4a) + (4b) = iN

4
f 12

T (0)
∫
x

[
−1

2

(
W[µC

∗
ν]∂

[µCν] − ∂[µC
∗
ν]W

[µCν]
)

− 2

3
(b1 + b2)

(
WµC

∗
ν ∂

νCµ − ∂µC
∗
νW

νCµ
)

− 1

3
(b1 − 2b2)

(
WµC

∗µ∂νCν − ∂µC
∗µWνC

ν
)

−
(

1− b1

3
− b2

3

)
CνC∗µFµν(A)−

(
1− b1

3
+
b2

3

)
C∗νCµFµν(B)

]
(5.16)

where we have defined b1, b2 and Wµ such that

b1 ≡ f 12
L (0)

f 12
T (0)

b2 ≡ M2
C

m2
1 −m2

2

Wµ ≡ Aµ − Bµ. (5.17)

At the self-dual limit r= 1 (m1= m2= m), equation (5.16) turns to the following simple form

(4a) + (4b) = N

48πm

∫
x

[
Tr
{
∂[µÃν][Ã

µ, Ãν]
}

+ O

(
∂
∂2

m2

)]
. (5.18)

5.3. Four-point gauge vertices

The four-point gauge diagrams which contribute to the Yang–Mills action are shown in
figure 5. They are given by the following integrals:

(5a) = −iN 1
4 Tr

[
GÃµ∂̂

µGÃν∂̂
νGÃρ∂̂

ρGÃσ ∂̂
σ
]

(5.19)

(5b) = −iNTr
[
GÃµ∂̂

µGÃν∂̂
νGÃρÃ

ρ
]

(5.20)

(5c) = −iN 1
2 Tr

[
GÃµÃ

µGÃνÃ
ν
]
. (5.21)

Calculation of the above integrals in the leading order of derivative expansion yields (see
appendix B)

(5a) + (5b) + (5c) = N

4
f 12

T (0)
∫
x

[− 1
2W[µC

∗
ν]W

[µCν] − b1WµC
∗µWνC

ν

+ 1
4C

µCµC
∗νC∗ν − 1

2

(
2− b1 − 3

4b3
)
CµC∗µC

νC∗ν
]

(5.22)
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(a) (b) (c)

Figure 5. Four-point gauge vertices. (a) n = 4. (b) n = 3. (c) n = 2.

where we have defined b3 as

b3 ≡ f 11
T (0) + f 22

T (0)

f 12
T (0)

. (5.23)

At the self-dual limit, equation (5.22) is simplified to the following form:

(5a) + (5b) + (5c) = N

96πm

∫
x

[
tr
{
[Ãµ, Ãν][Ãµ, Ãν]

}
+ O

(
∂2

m2

)]
. (5.24)

5.4. Large-N effective action and the equations of motion

Combining equations (5.12), (5.16) and (5.22), we obtain the U(1)A×U(1)B gauge invariant
effective action

Leff = − 1

4gA2
FµνF

µν(A)− 1

4gB2
FµνF

µν(B) + M2
CV
∗
µV

µ − 1

2

(D[µVν]
)∗ (D[µV ν]

)

− 2

3
(b1 + b2)(DµVν)

∗(DνV µ)− 1

3
(b1 − 2b2)

(DµV
µ
)∗
(DνV

ν)

−
(

1− b1

3
− b2

3

)
iV νV ∗µFµν(A) +

(
1− b1

3
+
b2

3

)
iV νV ∗µFµν(B)

+ κV µVµV
∗νV ∗ν − 2κ

(
2− b1 − 3

4
b3

)
V µV ∗µV

νV ∗ν (5.25)

where the gauge couplings gA, gB and the four-point coupling κ are given by

g2
A ≡

1

Nf 11
T (0)

g2
B ≡

1

Nf 22
T (0)

κ ≡ 1

Nf 12
T (0)

(5.26)

and Dµ denotes the U(1)A ×U(1)B covariant derivative Dµ ≡ ∂µ − iWµ. The V field comes

from the rescaling
√
Nf 12

T (0)Cµ −→ 2Vµ.
The field equations derived from the above Lagrangian are given as follows:

∂µFµν(A) = g2
AJ

+
ν (5.27)

∂µFµν(B) = g2
BJ
−
ν (5.28)

∂µFµν(V ) + b1∂ν∂µV
µ + M2

CVν = J̃ ν (5.29)
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where the U(1)A×U(1)B current J±ν and the source current for the V field J̃ ν are given such
that

J +
ν = i(1− b1 − b2)∂

µ
(
V[µV

∗
ν]

)
+ ib1

[
V ∗ν ∂µV

µ − Vν∂µV
∗µ]

+ i
[
V µFµν(V

∗)− V ∗µFµν(V )
]

+ (b1 − 1)WµV(νV
∗
µ) + 2WνV

∗
µV

µ (5.30)

J−ν = −J +
ν −

2b2

3
i∂µ

(
V[µV

∗
ν]

)
(5.31)

J̃ ν = iWµFµν(V ) + iDµ
(
W[µVν]

)
+ ib1

[
∂ν
(
WµV

µ
)

+ WνDµV
µ
]

− i(1− b1 − b2)V
µFµν(A) + i

(
1− b1 − b2

3

)
V µFµν(B)

+ 4κ

(
2− b1 − 3

4
b3

)
V µV ∗µVν − 2κV µVµV

∗
ν . (5.32)

The first two field equations require the current conservation ∂νJ±ν = 0 which we can confirm
by using all the field equations together with the identity

Im
[
V ∗ν J̃

ν
] = 1

2∂
ν
[
(b1 − 1)WµV(νV

∗
µ) + 2WνV

∗
µV

µ
]
. (5.33)

Taking the divergence of the third field equation yields(
b1 � +M2

C

)
∂µV

µ = ∂µJ̃
µ. (5.34)

Note that the parameter b1 is negative (see equations (A.8) and (A.9) in appendix A).
Therefore, if we turn off all the interactions

(
∂µJ̃

µ = 0
)
, equation (5.34) tells us that the

scalar mode of the V boson becomes a tachyon. As we will show shortly, the V boson turns
into the off-diagonal components of the enhanced U(2) gauge bosons at the self-dual limit. In
order to quantize the effective gauge theory (5.25), we have to take all the interaction terms
into account even away from the self-dual points. In fact, ∂µJ̃ µ contains a term such as
Aν∂

ν (∂µV
µ) which may possibly change the tachyonic behaviour of the scalar mode.

5.5. Yang–Mills action of the enhanced gauge symmetry

At the self-dual limit r = 1, the effective action (5.25) turns into the U(2) Yang–Mills action

Leff = N

96πm
trFµνF

µν(Ã) (5.35)

where Fµν(Ã) ≡ ∂[µÃν] + [Ãµ, Ãν] is the field strength of the enhanced non-Abelian U(2)
gauge symmetry. Away from the self-dual points m1 �= m2, the effective gauge action (5.25)
is no longer written as a single trace of U(2) matrix. However, the three-point and four-point
gauge interactions still preserve the U(1)A × U(1)B gauge invariance.

We conclude this section by observing that the large-N effective action is renormalizable
in fewer than 3 + 1 dimensions. The only UV divergence is the one which arises in the
gap equation and the other possible UV divergences in the vacuum polarization function are
either forbidden by the gauge symmetry or related to the order parameters �v1 or �v2. The
renormalization conditions (4.1) and (4.2) are enough to realize the UV finite large-N theory.
The higher order corrections in 1/N-expansion can be systematically renormalized by using
the counter terms which the large-N effective action (3.1) suffices. Unfortunately, in 3 + 1
dimensions, there arises a logarithmic divergence in the large-N gap equations (see equation
(A.27) in appendix A). This UV divergence prevents us from taking the continuum limit. To
improve this involves modifying the renormalization group equations by adding extra counter
terms which absorb the logarithmic divergence and imposing a matching condition which
requires the compositeness of dynamical gauge bosons [21, 22].
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6. Conclusion and discussion

We have performed the large-N path integral of a coupled CP(N) model with dual symmetry
and analysed the vacuum structure and renormalization in the large-N limit in 2 + 1 dimensions.
The large-N gap equation analysis yields a solution with two decoupled gap equations.
Consequently, we have the dimensionless coupling constant (u1, u2)-plane separated into
four regions with two UV fixed lines. Then we find the breaking patterns of the global SU(N)

and the local H symmetries which are summarized in table 1.

Table 1. The breaking patterns of the global SU(N) and the local H symmetries.

Phase [SU(N)]global [H]local

I SU(N − 2)×U(1)× U(1) Fully broken
II SU(N − 1)×U(1) U(1)A
III SU(N − 1)×U(1) U(1)B
IV SU(N) unbroken U(1)A ×U(1)B unbroken

Every transition between two of the four phases is the second-order phase transition
associated with the dynamical Higgs mechanism. However, the massive gauge boson which
acquires a mass term through the Higgs mechanism is actually no longer stable and is
dissociated into a pair of Nambu–Goldstone bosons (for example in the phase II, a massive
B boson decays into a pair of ψ

†
2 and ψ2). Note that the origin of the C boson mass is

not the Higgs mechanism but rather the explicit breaking parameter r, the radius (or inverse
radius) of CP(N). The C boson is therefore a propagating massive vector field even in broken
phases.

We also have computed the effective gauge Lagrangian in the unbroken phase IV explicitly.
The effective Lagrangian (5.25) tells us that other than dynamically generated gauge bosons
A and B, we have a propagating C boson which acquires radiatively induced finite mass away
from the UV fixed point. In addition, the RG analysis of section 4 has shown that all the RG
trajectories inside the phase IV flow into the self-dual UV fixed point where the two UV fixed
lines intersect. Therefore, we conclude that even if we start from the theory with two different
CP(N) radii, the theory favours the conformal fixed point with two coincident radii and the
U(1)A × U(1)B gauge symmetry is enhanced to be a non-Abelian U(2) symmetry in the UV
limit. Note that the classical dual symmetry is not broken by the non-perturbative radiative
corrections and survives in the effective action (5.25).

The dynamical generation of the C boson mass considered in this paper is purely due
to the finite radiative corrections, whereas the conventional dynamical Higgs mechanism is
known to be unsatisfactory due to the hierarchy problem. Therefore, our results could have
some realistic applications, if the present analysis could be extended to 3 + 1 dimensions
[21, 22]. In this respect, it is useful to recall that one of the original motivations for the
dynamical generation of gauge bosons through the nonlinear sigma model was to account
for the gauge group which is large enough to accommodate the known standard model in
N = 8 extended supergravity theory [17]. However, this theory has, although large enough,
a non-compact sigma model sector and progress along this direction has been hampered by
the no-go theorem [23] which states that the dynamical generation of gauge bosons does not
occur for non-compact target spaces. Therefore, it remains to be a challenging problem to
overcome [24] the no-go theorem and extend our results to the non-compact nonlinear sigma
model in 3 + 1 dimensions.
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Appendix A. Dimensional regularization

Throughout the calculation of vacuum polarization function and three- and four-point
functions, we have used dimensional regularization which is simply calculating Feynman
integrals in the spacetime dimensionality 2 � D � 4. Two-dimensional results are obtained
by introducing a small parameter ε ≡ (D−2)/2 and taking the limit ε → 0. If we use another
small parameter ε̃ ≡ (4 − D)/2 and take the limit ε̃ → 0, we can also see four-dimensional
results.

The vacuum polarization function in D dimensions is given by the same Feynman integral
(5.3), except that the momentum integration is now D-dimensional, and is calculated such that

.ij
µν(p) =

(
gµν − pµpν

p2

)
.

ij

T (p) +

(
pµpν

p2

)
.

ij

L (p) (A.1)

with the transverse and longitudinal functions .T,.L which are obtained in D dimensions as

.
ij

T (p) = ηD

[
4

D − 2

][
mD−2

i + mD−2
j

2
−
∫ 1

0
dxK

D−2
2

]
(A.2)

.
ij

L (p) = ηD



(
m2

i −m2
j

)2

p2



[

2

D − 2

mD−2
i −mD−2

j

m2
i −m2

j

−
∫ 1

0
dxK

D−4
2

]
(A.3)

whereK ≡ xm2
i +(1−x)m2

j−x(1−x)p2 and ηD ≡ �
(
2− D

2

)/
(4π)

D
2 . Actually, the vacuum

polarization function .
ij
µν includes an extra constant term

gµνηD

[
2

2−D

] (
mD−2

i −mD−2
j

)
(A.4)

which is asymmetric under interchanging of i and j. However, this term completely vanishes
in the effective action due to the cancellation between two off-diagonal terms, say Cµ.12

µνC
∗ν

and C∗µ.21
µνC

ν , so that we ignored it in equation (A.1).
The transverse and longitudinal functions are rewritten as

.
ij

T (p) = c
ij

T + p2f
ij

T (p) .
ij

L (p) = c
ij

L + p2f
ij

L (p) (A.5)

of which lowest order coefficients in momentum expansion are given by the integrals:

c
ij

T = ηD

[
4

D − 2

][
mD−2

i + mD−2
j

2
−
∫ 1

0
dxM

D−2
2

]
(A.6)

c
ij

L = ηD

[
D − 4

2

] (
m2

i −m2
j

)2 ∫ 1

0
dx x(1− x)M

D−6
2 (A.7)

f
ij

T (0) = 2ηD

∫ 1

0
dx x(1− x)M

D−4
2 (A.8)

f
ij

L (0) = −ηD
[
(D − 4)(D − 6)

8

] (
m2

i −m2
j

)2 ∫ 1

0
dx x2(1− x)2M

D−8
2 (A.9)
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where M ≡ xm2
i + (1 − x)m2

j . We find that all coefficients are symmetric under interchange

of i and j . Moreover, cijT and c
ij

L are equal to each other
(
c
ij

T = c
ij

L ≡ cij
)

and vanish for
i = j . Note also that f 12

T (0) is always positive, while both c12 and f 12
L (0) are negative in D <

4. The non-zero coefficients are calculated and determined as follows:

Diagonal elements:

f 11
T (0) = ηD

3
mD−4

1 f 22
T (0) = ηD

3
mD−4

2 . (A.10)

Non-diagonal elements:

c12 = 2ηD

[
1

m2
1 −m2

2

][
(D − 4)

(
mD

1 −mD
2

)
D(D − 2)

− mD−2
1 m2

2 −m2
1m

D−2
2

D − 2

]
(A.11)

f 12
T (0) = 8ηD

[
1

m2
1 −m2

2

]3 [
mD+2

1 −mD+2
2

D(D + 2)
− mD

1 m
2
2 −m2

1m
D
2

D(D − 2)

]
(A.12)

f 12
L (0) = 2ηD

[
1

m2
1 −m2

2

]3
[
m4

1m
D−2
2 −mD−2

1 m4
2

D − 2
+ 2

(D − 6)
(
mD

1 m
2
2 −m2

1m
D
2

)
D(D − 2)

− (D − 4)(D − 6)
(
mD+2

1 −mD+2
2

)
D(D − 2)(D + 2)

]
. (A.13)

Specifically, they are given for D = 2, 3, 4 as follows:

D = 2:

c12 = 1

2π

[
1− m2

1 + m2
2

m2
1 −m2

2

ln
m1

m2

]
(A.14)

f 11
T (0) = 1

12πm2
1

f 22
T (0) = 1

12πm2
2

(A.15)

f 12
T (0) = 1

4π

[
1

m2
1 −m2

2

]3 [
m4

1 −m4
2 − 4m2

1m
2
2 ln

m1

m2

]
(A.16)

f 12
L (0) = 3

4π

[
1

m2
1 −m2

2

]3 [
m4

1 −m4
2 −

2

3

(
m4

1 + m4
2 + 4m2

1m
2
2

)
ln
m1

m2

]
. (A.17)

D = 3:

c12 = − 1

12π

(m1 −m2)
2

m1 + m2
(A.18)

f 11
T (0) = 1

24πm1
f 22

T (0) = 1

24πm2
(A.19)

f 12
T (0) = 1

15π

m2
1 + 3m1m2 + m2

2

(m1 + m2)3
(A.20)

f 12
L (0) = − 1

20π

(m1 −m2)
2

(m1 + m2)3
. (A.21)

D = 4:

c12 = − 1

32π2

[
m2

1 + m2
2 −

4m2
1m

2
2

m2
1 −m2

2

ln
m1

m2

]
(A.22)
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f 11
T (0) = 1

48π2

[
1

ε̃
− γ − ln 4π − ln

m2
1

µ2

]
(A.23)

f 22
T (0) = 1

48π2

[
1

ε̃
− γ − ln 4π − ln

m2
2

µ2

]
(A.24)

f 12
T (0) = 1

48π2

[
1

ε̃
− γ − ln 4π − ln

m1m2

µ2

]
+

1

48π2

[
1

m2
1 −m2

2

]3

×
[

1

6

(
5m4

1 + 5m4
2 − 22m2

1m
2
2

) (
m2

1 −m2
2

)
− (

m2
1 + m2

2

) (
m4

1 + m4
2 − 4m2

1m
2
2

)
ln

m1

m2

]
(A.25)

f 12
L (0) = − 1

96π2

[
1

m2
1 −m2

2

]3 [(
m2

1 −m2
2

) (
m4

1 + 10m2
1m

2
2 + m4

2

)
− 12m2

1m
2
2

(
m2

1 + m2
2

)
ln

m1

m2

]
. (A.26)

In four dimensions there arises the same logarithmic divergence ε̃−1 in f 11
T , f 22

T and f 12
T ,

which correspond to U(1)A,U(1)B gauge couplings and the four-point self-coupling of V
boson, respectively. The same UV divergence also arises in the large-N gap equation and
breaks the renormalizability in 1/N expansion. Let us briefly look at how this goes on below.
The dynamically generated boson masses m1, m2 are given by solving the gap equations in
section 3 in D = 4 with setting m3 = 0. In the symmetric phase, we obtain

1

Ng2
i

= 1

16π2

[
'2 −m2

i ln
'2

m2
i

]
. (A.27)

The logarithmic divergence in the right-hand side prevents us from taking the continuum
limit where each of mi becomes independent of the cutoff '. This logarithmic divergence
is the same as that in the vacuum polarization. They are related to each other through the
correspondence

ln
'2

µ2
↔ 1

ε̃
− γ − ln 4π (A.28)

between two regularization schemes.

Appendix B. Three- and four-point vertices in the large-N limit

Three-point functions given in equations (5.14) and (5.15) are combined into the following
single integral in the leading order of momentum expansion:

N
∑
ijk

∫
x

Ãν
jk(x)Ã

ρ

ki(x)L
ijk
µνρ(i∂x)Ã

µ

ij (x). (B.1)

Each component of the integration kernel Lijk
µνρ is determined such that

L111
µνρ(p) = −

4A

3D
p[νgρ]µ (B.2)

L222
µνρ(p) = −

4Ā

3D
p[νgρ]µ (B.3)

L112
µνρ(p) = −

4I

3D
p[νgρ]µ (B.4)
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L221
µνρ(p) = −

4Ī

3D
p[νgρ]µ (B.5)

L121
µνρ(p) = −

4

3D
[I+pνgρµ − I−pρgµν + L′pµgνρ] (B.6)

L212
µνρ(p) = −

4

3D
[Ī+pνgρµ − Ī−pρgµν + L̄′pµgνρ ] (B.7)

L211
µνρ(p) = −

4

3D
[I−pνgρµ − I+pρgµν − L′pµgνρ ] (B.8)

L122
µνρ(p) = −

4

3D
[Ī−pνgρµ − Ī+pρgµν − L̄′pµgνρ ] (B.9)

where the coefficients are given by the following Feynman integrals:

A =
∫ k

k2[G1(k)]3 (B.10)

I± = I ± L L′ = L− 3D

4
Z (B.11)

I =
∫ k

k2[G1(k)]2G2(k) (B.12)

L = 4

D + 2

∫ k

(k2)2[G1(k)]2G2(k)[G1(k)−G2(k)] (B.13)

Z =
∫ k

[
G1(k)G2(k)− 4

D
k2G1(k)[G2(k)]2

]
. (B.14)

where
∫ k ≡ ∫ dDk/(2π)D and Gi(k) ≡ 1/

(
k2 + m2

i

)
. The integrals with a bar symbol are

obtained by switching m1 and m2, for example, Ī = I |G1↔G2 . We can also confirm that
Ī± ≡ I± and L̄′ ≡ L′. Computing the above integrals, it provides the following matching
equations which yield equation (5.16) in section 5.2.

f 12
T (0) = − 4i

3D
I− (B.15)

f 12
L (0) = 4i

3D
(I+ − I− + L′). (B.16)

Note that A and Ā do not contribute to the effective action after contracting with gauge fields.
The integrals I and Ī provide non-minimal gauge interactions which cannot be written in terms
of the covariant derivative Dµ = ∂µ − iAµ + iBµ in section 5.4.

Similarly, four-point functions given in equations (5.19), (5.20) and (5.21) are cast into
the following single integral in the leading order of the momentum expansion.

N
∑
ijk

∫
x

[
Ã

µ

ij (x)Ãµkl(x)Ã
ν
jk(x)Ãνli (x)W

ijkl + Ã
µ

ij (x)Ãµjk(x)Ã
ν
kl(x)Ãνli (x)L

ijkl
]
. (B.17)

Each component of the integral kernels Wijkl and Lijkl is given by the following Feynman
integrals

Lijkl = 2Wijkl + Wijk + Wik (B.18)

Wik = − i

2

∫ k

Gi(k)Gk(k) (B.19)

Wijk = 4i

D

∫ k

k2Gi(k)Gj(k)Gk(k) (B.20)

Wijkl = − 4i

D(D + 2)

∫ k

(k2)2Gi(k)Gj(k)Gk(k)Gl(k). (B.21)
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Note that Wik,Wijk and Wijkl are all completely symmetric tensors. Again computing the
above integrals, it provides the following matching conditions which yield equation (5.22) in
section 5.3.

f 12
T (0) = 2W 1122 = −L1112 − L1211 (B.22)

f 12
L (0) = 2W 1122 − 4W 1112 − L1121 − L2111 = L1122 + L2211 − L1112 − L1211. (B.23)

The four-point self-couplings of V bosons, say V ∗µV
∗µVνV

ν and V ∗µV
µV ∗ν V

ν , which cannot
be obtained from the covariant derivative Dµ, are given by W 1212 + W 2121 and L1212 + L2121,
respectively.
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